Comparison between Mahalanobis classification and neural network for oil spill detection using RADARSAT-1 SAR data
نویسندگان
چکیده
Oil spill or leakage into waterways and ocean spreads very rapidly due to the action of wind and currents. The study of the behavior and movement of these oil spills in sea had become imperative in describing a suitable management plan for mitigating the adverse impacts arising from such accidents. But the inherent difficulty of discriminating between oil spills and lookalikes is a main challenge with Synthetic Aperture Radar (SAR) satellite data and this is a drawback, which makes it difficult to develop a fully automated algorithm for detection of oil spill. As such, an automatic algorithm with a reliable confidence estimator of oil spill would be highly desirable. The main objective of this work is to develop comparative automatic detection procedures for oil spill pixels in multimode (Standard beam S2, Wide beam W1 and fine beam F1) RADARSAT-1 SAR satellite data that were acquired in the Malacca Straits using two algorithms namely, post supervised classification, and neural network (NN) for oil spill detection. The results show that NN is the best indicator for oil spill detection as it can discriminate oil spill from its surrounding such as look-alikes, sea surface and land. The receiver operator characteristic (ROC) is used to determine the accuracy of oil spill detection from RADARSAT-1 SAR data. The results show that oil spills, lookalikes,and sea surface roughness are perfectly discriminated with an area difference of 20% for oil spill, 35% look–alikes, 15% land and 30% for the sea roughness. The NN shows higher performance in automatic detection of oil spill in RADARSAT-1 SAR data as compared to Mahalanobis classification with standard deviation of 0.12. It can therefore be concluded that NN algorithm is an appropriate algorithm for oil spill automatic detection and W1 beam mode is appropriate for oil spill and look-alikes discrimination and detection.
منابع مشابه
Neural Network Algorithm for Oil Spill Automatic Detection from Multi Mode Radarsat-1 Sar Satellite Data
Abstract: The main objective of this work is to utilize automatic detection algorithm for oil spill pixels in multimode (Standard beam S2, Wide beam W1 and fine beam F1) RADARSAT-1 SAR satellite data and ENVISAT ASAR that were acquired in the Malacca Straits, and Gulf of Mexico, respectively. In doing so, neural network (NN) algorithm is implemented for oil spill detection. The results show tha...
متن کاملAutomatic Detection Algorithms for Oil Spill from Multisar Data
The main objective of this work is to develop comparative automatic detection procedures for oil spill pixels in multimode (Standard beam S2, Wide beam W1 and fine beam F1) RADARSAT-1 SAR satellite data that were acquired in the Malacca Straits using two algorithms namely, post supervised classification, and neural network (NN) for oil spill detection. The results show that NN is the best indic...
متن کاملOcean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network
Oil spill accidents from ship or oil platform cause damage to marine and coastal environment and ecosystems. To monitor such spill events from space, fully polarimetric (Pol-SAR) synthetic aperture radar (SAR) has been greatly used in improving oil spill observation. Aiming to promote ocean oil spill classification accuracy, we developed a new oil spill identification method by combining multip...
متن کاملApplication of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images
Polarimetric synthetic aperture radar (SAR) remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact o...
متن کاملGenetic Algorithm for Oil Spill Automatic Detection from Multisar Satellite Data
The main objective of this work is to design automatic detection procedures for oil spill in synthetic aperture radar (SAR) satellite data. In doing so the genetic algorithm tool was designed to investigate the occurrence of using ENVISAT and RADARSAT-2 SAR satellite data. The study shows that genetic algorithm provides accurate pattern of oil slick in SAR data. This shown by 90% for oil spill,...
متن کامل